
Rhythmic Syncope and Strict Locality in
Subregular Phonology

Dustin Bowers and Yiding Hao sync · stony brook, ny

university of arizona · yale university December 1, 2018

Introduction

Rhythmic Syncope

Rhythmic syncope is the deletion of every second vowel in a word.

(1) 1930s Ojibwe (Bowers, To appear)
a. [ɡtɪɡmɪngɪbnɑː-d] “If he rolls him”
b. [n-ɡʊtɡʊmnʌgbɪnɑː] “I roll him”

3 of 23

Rhythmic Syncope

Rhythmic syncope is the deletion of every second vowel in a word.

(1) 1930s Ojibwe (Bowers, To appear)
a. [ɡtɪɡmɪngɪbnɑː-d] “If he rolls him”
b. [n-ɡʊtɡʊmnʌgbɪnɑː] “I roll him”

3 of 23

Rhythmic Syncope

Rhythmic syncope is the deletion of every second vowel in a word.

(1) 1930s Ojibwe (Bowers, To appear)
a. [ɡtɪɡmɪngɪbnɑː-d] “If he rolls him”
b. [n-ɡʊtɡʊmnʌgbɪnɑː] “I roll him”

3 of 23

Rhythmic Syncope

Rhythmic syncope is the deletion of every second vowel in a word.

(1) 1930s Ojibwe (Bowers, To appear)
a. /ɡʊtɪɡʊmɪnʌgɪbɪnɑː-d/ “If he rolls him”
b. /ni-ɡʊtɪɡʊmɪnʌgɪbɪnɑː/ “I roll him”

3 of 23

Rhythmic Syncope

Definition
Assume an alphabet Σ = C ∪ V, with C ∩ V = ∅. The rhythmic
syncope function is the function defined by

ρ(c0v1c1v2c2 . . . vncn) = c0v1c1c2v3c3c4 . . . cn

where for each i, ci ∈ C∗ and vi ∈ V.

ρ(CVCVCVCVCVC) = CVCCVCCVC

4 of 23

Rhythmic Syncope

Definition
Assume an alphabet Σ = C ∪ V, with C ∩ V = ∅. The rhythmic
syncope function is the function defined by

ρ(c0v1c1v2c2 . . . vncn) = c0v1c1c2v3c3c4 . . . cn

where for each i, ci ∈ C∗ and vi ∈ V.

ρ(CVCVCVCVCVC) = CVCCVCCVC

4 of 23

Outline

▶ Show that ρ is not strictly local.

▶ Define a class of functions that includes ρ.
▶ Discuss the theoretical consequences.

5 of 23

Outline

▶ Show that ρ is not strictly local.
▶ Define a class of functions that includes ρ.

▶ Discuss the theoretical consequences.

5 of 23

Outline

▶ Show that ρ is not strictly local.
▶ Define a class of functions that includes ρ.
▶ Discuss the theoretical consequences.

5 of 23

Strictly Local Functions

Subregular Phonology

What constitutes a possible phonological dependency?

▶ Tier-based strictly local dependencies (Heinz et al., 2011).
▶ *NC:̥ *np, *nt, *nk, *mp, *mt, *mk…
▶ *CC: *pp, *pt, *pk, *bp, *bt, *bk…
▶ NoCoda: *p#, *t#, *k#, *b#, *d#, *g#…
▶ Vowel Harmony: *ea, *eı, *eu, *ae, *ai, *aü…

7 of 23

Subregular Phonology

What constitutes a possible phonological dependency?
▶ Tier-based strictly local dependencies (Heinz et al., 2011).

▶ *NC:̥ *np, *nt, *nk, *mp, *mt, *mk…
▶ *CC: *pp, *pt, *pk, *bp, *bt, *bk…
▶ NoCoda: *p#, *t#, *k#, *b#, *d#, *g#…
▶ Vowel Harmony: *ea, *eı, *eu, *ae, *ai, *aü…

7 of 23

Subregular Phonology

What constitutes a possible phonological dependency?
▶ Tier-based strictly local dependencies (Heinz et al., 2011).
▶ *NC:̥ *np, *nt, *nk, *mp, *mt, *mk…

▶ *CC: *pp, *pt, *pk, *bp, *bt, *bk…
▶ NoCoda: *p#, *t#, *k#, *b#, *d#, *g#…
▶ Vowel Harmony: *ea, *eı, *eu, *ae, *ai, *aü…

7 of 23

Subregular Phonology

What constitutes a possible phonological dependency?
▶ Tier-based strictly local dependencies (Heinz et al., 2011).
▶ *NC:̥ *np, *nt, *nk, *mp, *mt, *mk…
▶ *CC: *pp, *pt, *pk, *bp, *bt, *bk…

▶ NoCoda: *p#, *t#, *k#, *b#, *d#, *g#…
▶ Vowel Harmony: *ea, *eı, *eu, *ae, *ai, *aü…

7 of 23

Subregular Phonology

What constitutes a possible phonological dependency?
▶ Tier-based strictly local dependencies (Heinz et al., 2011).
▶ *NC:̥ *np, *nt, *nk, *mp, *mt, *mk…
▶ *CC: *pp, *pt, *pk, *bp, *bt, *bk…
▶ NoCoda: *p#, *t#, *k#, *b#, *d#, *g#…

▶ Vowel Harmony: *ea, *eı, *eu, *ae, *ai, *aü…

7 of 23

Subregular Phonology

What constitutes a possible phonological dependency?
▶ Tier-based strictly local dependencies (Heinz et al., 2011).
▶ *NC:̥ *np, *nt, *nk, *mp, *mt, *mk…
▶ *CC: *pp, *pt, *pk, *bp, *bt, *bk…
▶ NoCoda: *p#, *t#, *k#, *b#, *d#, *g#…
▶ Vowel Harmony: *ea, *eı, *eu, *ae, *ai, *aü…

7 of 23

Tier-Based Strictly Local Languages

A language L is k-strictly local on tier T (TSL) if

▶ there exists S ⊆ Σ∗ such that
▶ every string in S has length at most k and
▶ x ∈ L if and only if no element of S is a substring of x, ignoring

symbols not in T.

8 of 23

Tier-Based Strictly Local Languages

A language L is k-strictly local on tier T (TSL) if
▶ there exists S ⊆ Σ∗ such that

▶ every string in S has length at most k and
▶ x ∈ L if and only if no element of S is a substring of x, ignoring

symbols not in T.

8 of 23

Tier-Based Strictly Local Languages

A language L is k-strictly local on tier T (TSL) if
▶ there exists S ⊆ Σ∗ such that
▶ every string in S has length at most k and

▶ x ∈ L if and only if no element of S is a substring of x, ignoring
symbols not in T.

8 of 23

Tier-Based Strictly Local Languages

A language L is k-strictly local on tier T (TSL) if
▶ there exists S ⊆ Σ∗ such that
▶ every string in S has length at most k and
▶ x ∈ L if and only if no element of S is a substring of x, ignoring

symbols not in T.

8 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.

▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}
Japanese /aiskriim/ → [aisukuriimu]
Output: a
Input: # a i s k r i i m #

↑

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}
Japanese /aiskriim/ → [aisukuriimu]
Output: a i
Input: # a i s k r i i m #

↑

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}
Japanese /aiskriim/ → [aisukuriimu]
Output: a i s
Input: # a i s k r i i m #

↑

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}
Japanese /aiskriim/ → [aisukuriimu]
Output: a i s u k
Input: # a i s k r i i m #

↑

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}
Japanese /aiskriim/ → [aisukuriimu]
Output: a i s u k u r
Input: # a i s k r i i m #

↑

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}
Japanese /aiskriim/ → [aisukuriimu]
Output: a i s u k u r i
Input: # a i s k r i i m #

↑

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}
Japanese /aiskriim/ → [aisukuriimu]
Output: a i s u k u r i i
Input: # a i s k r i i m #

↑

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}
Japanese /aiskriim/ → [aisukuriimu]
Output: a i s u k u r i i m
Input: # a i s k r i i m #

↑

9 of 23

Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.
▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}
Japanese /aiskriim/ → [aisukuriimu]
Output: a i s u k u r i i m u
Input: # a i s k r i i m #

↑

9 of 23

Tier-Based Strictly Local Functions

Wemake the following assumptions about phonological processes.

▶ Streaming: The process scans the input string from left to right
and produces part of the output at each time step.

▶ Determinism: If the process f outputs y after reading x, then y is
a common prefix of {f(xz)|z ∈ Σ∗}.

Definition
A common prefix of a set A is a string p such that every string in A
begins with p.

▶ Parsimony: This common prefix is the longest one possible.

10 of 23

Tier-Based Strictly Local Functions

Wemake the following assumptions about phonological processes.
▶ Streaming: The process scans the input string from left to right

and produces part of the output at each time step.

▶ Determinism: If the process f outputs y after reading x, then y is
a common prefix of {f(xz)|z ∈ Σ∗}.

Definition
A common prefix of a set A is a string p such that every string in A
begins with p.

▶ Parsimony: This common prefix is the longest one possible.

10 of 23

Tier-Based Strictly Local Functions

Wemake the following assumptions about phonological processes.
▶ Streaming: The process scans the input string from left to right

and produces part of the output at each time step.
▶ Determinism: If the process f outputs y after reading x, then y is

a common prefix of {f(xz)|z ∈ Σ∗}.

Definition
A common prefix of a set A is a string p such that every string in A
begins with p.

▶ Parsimony: This common prefix is the longest one possible.

10 of 23

Tier-Based Strictly Local Functions

Wemake the following assumptions about phonological processes.
▶ Streaming: The process scans the input string from left to right

and produces part of the output at each time step.
▶ Determinism: If the process f outputs y after reading x, then y is

a common prefix of {f(xz)|z ∈ Σ∗}.

Definition
A common prefix of a set A is a string p such that every string in A
begins with p.

▶ Parsimony: This common prefix is the longest one possible.

10 of 23

Tier-Based Strictly Local Functions

Wemake the following assumptions about phonological processes.
▶ Streaming: The process scans the input string from left to right

and produces part of the output at each time step.
▶ Determinism: If the process f outputs y after reading x, then y is

a common prefix of {f(xz)|z ∈ Σ∗}.

Definition
A common prefix of a set A is a string p such that every string in A
begins with p.

▶ Parsimony: This common prefix is the longest one possible.

10 of 23

Tier-Based Strictly Local Functions

Definition
For a function f : Σ∗ → Σ∗,

f←(x) = lcp({f(xz)|z ∈ Σ∗})

and f→(z, xz) is the string such that

f(xz) = f←(x)f→(z, xz).

Definition
For a string x ∈ Σ∗, tier T ⊆ Σ, and number k, suffkT(x) is the last k
symbols of x on tier T.

11 of 23

Tier-Based Strictly Local Functions

Definition
For a function f : Σ∗ → Σ∗,

f←(x) = lcp({f(xz)|z ∈ Σ∗})

and f→(z, xz) is the string such that

f(xz) = f←(x)f→(z, xz).

Definition
For a string x ∈ Σ∗, tier T ⊆ Σ, and number k, suffkT(x) is the last k
symbols of x on tier T.

11 of 23

Tier-Based Strictly Local Functions

Definition (Chandlee et al., In prep)
A function f : Σ∗ → Σ∗ is k-strictly local on tier T if for every u, v ∈ Σ∗,
if

suffk−1T (u) = suffk−1T (v)

and
suffk−1T (f←(u)) = suffk−1T (f←(v)),

then for allw ∈ Σ∗ we have

f→(w,uw) = f→(w, vw).

12 of 23

ρ is not TSL

To show that ρ is not k-SL on tier T, we must find u, v,w such that

suffk−1T (u) = suffk−1T (v)

suffk−1T (ρ←(u)) = suffk−1T (ρ←(v)),

but ρ→(w,uw) ̸= ρ→(w, vw).

▶ Let a be a vowel. u = a4k, v = a4k+1,w = a

▶ ρ←(u) = a2k, ρ←(v) = a2k+1

▶ ρ(uw) = a2k+1, ρ(vw) = a2k+1

▶ ρ→(w,uw) = a, ρ→(w, vw) = ∅

13 of 23

ρ is not TSL

To show that ρ is not k-SL on tier T, we must find u, v,w such that

suffk−1T (u) = suffk−1T (v)

suffk−1T (ρ←(u)) = suffk−1T (ρ←(v)),

but ρ→(w,uw) ̸= ρ→(w, vw).
▶ Let a be a vowel. u = a4k, v = a4k+1,w = a

▶ ρ←(u) = a2k, ρ←(v) = a2k+1

▶ ρ(uw) = a2k+1, ρ(vw) = a2k+1

▶ ρ→(w,uw) = a, ρ→(w, vw) = ∅

13 of 23

ρ is not TSL

To show that ρ is not k-SL on tier T, we must find u, v,w such that

suffk−1T (u) = suffk−1T (v)

suffk−1T (ρ←(u)) = suffk−1T (ρ←(v)),

but ρ→(w,uw) ̸= ρ→(w, vw).
▶ Let a be a vowel. u = a4k, v = a4k+1,w = a

▶ ρ←(u) = a2k, ρ←(v) = a2k+1

▶ ρ(uw) = a2k+1, ρ(vw) = a2k+1

▶ ρ→(w,uw) = a, ρ→(w, vw) = ∅

13 of 23

ρ is not TSL

To show that ρ is not k-SL on tier T, we must find u, v,w such that

suffk−1T (u) = suffk−1T (v)

suffk−1T (ρ←(u)) = suffk−1T (ρ←(v)),

but ρ→(w,uw) ̸= ρ→(w, vw).
▶ Let a be a vowel. u = a4k, v = a4k+1,w = a

▶ ρ←(u) = a2k, ρ←(v) = a2k+1

▶ ρ(uw) = a2k+1, ρ(vw) = a2k+1

▶ ρ→(w,uw) = a, ρ→(w, vw) = ∅

13 of 23

ρ is not TSL

To show that ρ is not k-SL on tier T, we must find u, v,w such that

suffk−1T (u) = suffk−1T (v)

suffk−1T (ρ←(u)) = suffk−1T (ρ←(v)),

but ρ→(w,uw) ̸= ρ→(w, vw).
▶ Let a be a vowel. u = a4k, v = a4k+1,w = a

▶ ρ←(u) = a2k, ρ←(v) = a2k+1

▶ ρ(uw) = a2k+1, ρ(vw) = a2k+1

▶ ρ→(w,uw) = a, ρ→(w, vw) = ∅

13 of 23

Time Alignment

Why is ρ not TSL?

Parsimonious deterministic streaming algorithm for ρ:

▶ Do not delete the first vowel.
▶ If the most recent vowel was deleted, do not delete this vowel.
▶ If the most recent vowel was not deleted, delete this vowel.

15 of 23

Why is ρ not TSL?

Parsimonious deterministic streaming algorithm for ρ:
▶ Do not delete the first vowel.

▶ If the most recent vowel was deleted, do not delete this vowel.
▶ If the most recent vowel was not deleted, delete this vowel.

15 of 23

Why is ρ not TSL?

Parsimonious deterministic streaming algorithm for ρ:
▶ Do not delete the first vowel.
▶ If the most recent vowel was deleted, do not delete this vowel.

▶ If the most recent vowel was not deleted, delete this vowel.

15 of 23

Why is ρ not TSL?

Parsimonious deterministic streaming algorithm for ρ:
▶ Do not delete the first vowel.
▶ If the most recent vowel was deleted, do not delete this vowel.
▶ If the most recent vowel was not deleted, delete this vowel.

15 of 23

Why is ρ not TSL?

Parsimonious deterministic streaming algorithm for ρ:
▶ Do not delete the first vowel.
▶ If the most recent vowel was deleted, do not delete this vowel.
▶ If the most recent vowel was not deleted, delete this vowel.

Deletion destroys evidence.

15 of 23

Rhythmic Syncope in OT

Existing OT analyses address this problem.

▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23

Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅

▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23

Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints

▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23

Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23

Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV

▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23

Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)

▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23

Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)

▶ (CV́.C)(CV́.C)

16 of 23

Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23

Time-Aligned TSL Functions

Definition
Let f : Σ∗ → Σ∗ and x = x1x2 . . . xn ∈ Σ∗. The ith most recent action of
f on x is the pair

⟨
xn−i+1, f←i (x)

⟩
, where f←i (x) is the string such that

f←(x1x2 . . . xn−i+1) = f←(x1x2 . . . xn−i)f
←
i (x).

For T ⊆ Σ∗, the ith most recent action of f on x on tier T is the action
denoted ⟨

xi,T, f
←
i,T(x)

⟩
:=

⟨
xn−j+1, f

←
n−j+1(x)

⟩
,

where j is the ith largest index such that xn−j+1 ∈ T and
f←n−j+1(x) ∈ T∗.

17 of 23

Time-Aligned TSL Functions

Definition
Let f : Σ∗ → Σ∗ and T ⊆ Σ. For k ∈ N, f is time-aligned k-strictly local
on tier T if for all u, v ∈ Σ, if⟨

ui,T, f
←
i,T(u)

⟩
=

⟨
vi,T, f

←
i,T(V)

⟩
for 1 ≤ i ≤ k, then for allw ∈ Σ∗,

f→(w,uw) = f→(w, vw).

18 of 23

ρ is TATSL

ρ is 1-TATSL on tier V.

▶ ρ←1,V(c0v1c1v2c2 . . . v2mc2m) = ∅
▶ ρ←1,V(c0v1c1v2c2 . . . v2m+1c2m+1) = v2m+1

19 of 23

ρ is TATSL

ρ is 1-TATSL on tier V.
▶ ρ←1,V(c0v1c1v2c2 . . . v2mc2m) = ∅

▶ ρ←1,V(c0v1c1v2c2 . . . v2m+1c2m+1) = v2m+1

19 of 23

ρ is TATSL

ρ is 1-TATSL on tier V.
▶ ρ←1,V(c0v1c1v2c2 . . . v2mc2m) = ∅
▶ ρ←1,V(c0v1c1v2c2 . . . v2m+1c2m+1) = v2m+1

19 of 23

Conclusion

Theoretical Consequences

▶ Chandlee’s (2014) goal is to describe all phonological processes.

▶ This talk suggests that TSL is not the right answer.
▶ However, Bowers (To appear) suggests that rhythmic syncope

may not be diachronically robust.

▶ 1930s: /ɡʊtɪɡʊmɪnʌgɪbɪnɑː-d/→ [ɡtɪɡmɪngɪbnɑː-d]
▶ Today: /ɡtɪɡmɪŋɪbnɑː-d/→ [ɡtɪɡmɪŋɪbnɑː-d]

▶ Modern speakers understand the 1930s forms but do not use
them.

▶ Similar phenomena have been observed in Old Russian
(Isacenko, 1970) and Old Irish (McManus, 1983).

21 of 23

Theoretical Consequences

▶ Chandlee’s (2014) goal is to describe all phonological processes.
▶ This talk suggests that TSL is not the right answer.

▶ However, Bowers (To appear) suggests that rhythmic syncope
may not be diachronically robust.

▶ 1930s: /ɡʊtɪɡʊmɪnʌgɪbɪnɑː-d/→ [ɡtɪɡmɪngɪbnɑː-d]
▶ Today: /ɡtɪɡmɪŋɪbnɑː-d/→ [ɡtɪɡmɪŋɪbnɑː-d]

▶ Modern speakers understand the 1930s forms but do not use
them.

▶ Similar phenomena have been observed in Old Russian
(Isacenko, 1970) and Old Irish (McManus, 1983).

21 of 23

Theoretical Consequences

▶ Chandlee’s (2014) goal is to describe all phonological processes.
▶ This talk suggests that TSL is not the right answer.
▶ However, Bowers (To appear) suggests that rhythmic syncope

may not be diachronically robust.

▶ 1930s: /ɡʊtɪɡʊmɪnʌgɪbɪnɑː-d/→ [ɡtɪɡmɪngɪbnɑː-d]
▶ Today: /ɡtɪɡmɪŋɪbnɑː-d/→ [ɡtɪɡmɪŋɪbnɑː-d]

▶ Modern speakers understand the 1930s forms but do not use
them.

▶ Similar phenomena have been observed in Old Russian
(Isacenko, 1970) and Old Irish (McManus, 1983).

21 of 23

Theoretical Consequences

▶ Chandlee’s (2014) goal is to describe all phonological processes.
▶ This talk suggests that TSL is not the right answer.
▶ However, Bowers (To appear) suggests that rhythmic syncope

may not be diachronically robust.
▶ 1930s: /ɡʊtɪɡʊmɪnʌgɪbɪnɑː-d/→ [ɡtɪɡmɪngɪbnɑː-d]

▶ Today: /ɡtɪɡmɪŋɪbnɑː-d/→ [ɡtɪɡmɪŋɪbnɑː-d]
▶ Modern speakers understand the 1930s forms but do not use

them.
▶ Similar phenomena have been observed in Old Russian

(Isacenko, 1970) and Old Irish (McManus, 1983).

21 of 23

Theoretical Consequences

▶ Chandlee’s (2014) goal is to describe all phonological processes.
▶ This talk suggests that TSL is not the right answer.
▶ However, Bowers (To appear) suggests that rhythmic syncope

may not be diachronically robust.
▶ 1930s: /ɡʊtɪɡʊmɪnʌgɪbɪnɑː-d/→ [ɡtɪɡmɪngɪbnɑː-d]
▶ Today: /ɡtɪɡmɪŋɪbnɑː-d/→ [ɡtɪɡmɪŋɪbnɑː-d]

▶ Modern speakers understand the 1930s forms but do not use
them.

▶ Similar phenomena have been observed in Old Russian
(Isacenko, 1970) and Old Irish (McManus, 1983).

21 of 23

Theoretical Consequences

▶ Chandlee’s (2014) goal is to describe all phonological processes.
▶ This talk suggests that TSL is not the right answer.
▶ However, Bowers (To appear) suggests that rhythmic syncope

may not be diachronically robust.
▶ 1930s: /ɡʊtɪɡʊmɪnʌgɪbɪnɑː-d/→ [ɡtɪɡmɪngɪbnɑː-d]
▶ Today: /ɡtɪɡmɪŋɪbnɑː-d/→ [ɡtɪɡmɪŋɪbnɑː-d]

▶ Modern speakers understand the 1930s forms but do not use
them.

▶ Similar phenomena have been observed in Old Russian
(Isacenko, 1970) and Old Irish (McManus, 1983).

21 of 23

Theoretical Consequences

▶ Chandlee’s (2014) goal is to describe all phonological processes.
▶ This talk suggests that TSL is not the right answer.
▶ However, Bowers (To appear) suggests that rhythmic syncope

may not be diachronically robust.
▶ 1930s: /ɡʊtɪɡʊmɪnʌgɪbɪnɑː-d/→ [ɡtɪɡmɪngɪbnɑː-d]
▶ Today: /ɡtɪɡmɪŋɪbnɑː-d/→ [ɡtɪɡmɪŋɪbnɑː-d]

▶ Modern speakers understand the 1930s forms but do not use
them.

▶ Similar phenomena have been observed in Old Russian
(Isacenko, 1970) and Old Irish (McManus, 1983).

21 of 23

Conclusion

▶ Rhythmic syncope is not TSL.

▶ The time-aligned TSL functions incorporate rhythmic syncope.
▶ Rejection of rhythmic syncope by child learners would constitute

evidence for the TSL hypothesis.

22 of 23

Conclusion

▶ Rhythmic syncope is not TSL.
▶ The time-aligned TSL functions incorporate rhythmic syncope.

▶ Rejection of rhythmic syncope by child learners would constitute
evidence for the TSL hypothesis.

22 of 23

Conclusion

▶ Rhythmic syncope is not TSL.
▶ The time-aligned TSL functions incorporate rhythmic syncope.
▶ Rejection of rhythmic syncope by child learners would constitute

evidence for the TSL hypothesis.

22 of 23

References

Blumenfeld, Lev A. 2006. Constraints on Phonological Interactions.
Stanford, CA: Stanford University PhD Dissertation.

Bowers, Dustin. To appear. The Nishnaabemwin Restructuring
Controversy: New Empirical Evidence. Phonology .

Chandlee, Jane. 2014. Strictly Local Phonological Processes. Newark,
DE: University of Delaware PhD Dissertation.

Chandlee, Jane, Rémi Eyraud & Jeffrey Heinz. In prep. Input–output
strictly local functions and their efficient learnability.

Heinz, Jeffrey, Chetan Rawal & Herbert G. Tanner. 2011. Tier-based
Strictly Local Constraints for Phonology. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, 58–64. Portland, OR: Association
for Computational Linguistics.

Isacenko, Alexander. 1970. East Slavic morphophonemics and the
treatment of the jers in Russian: A revision of Havlík’s law.
International Journal of Slavic Linguistics and Poetics 13. 73–124.

Kager, René. 1997. Rhythmic vowel deletion in Optimality Theory. In
Iggy Roca (ed.), Derivations and Constraints in Phonology,
463–499. Oxford, United Kingdom: Clarendon Press.

McCarthy, John J. 2008. The serial interaction of stress and syncope.
Natural Language & Linguistic Theory 26(3). 499–546.
doi:10.1007/s11049-008-9051-3.

McManus, Damian. 1983. A Chronology of the Latin Loan-Words in
Early Irish. Ériu 34. 21–71.

	Introduction
	Strictly Local Functions
	Time Alignment
	Conclusion

