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Introduction



Rhythmic Syncope

Rhythmic syncope is the deletion of every second vowel in a word.

(1) 1930s Ojibwe (Bowers, To appear)
a. [ɡtɪɡmɪngɪbnɑː-d] “If he rolls him”
b. [n-ɡʊtɡʊmnʌgbɪnɑː] “I roll him”
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Rhythmic Syncope

Definition
Assume an alphabet Σ = C ∪ V, with C ∩ V = ∅. The rhythmic
syncope function is the function defined by

ρ(c0v1c1v2c2 . . . vncn) = c0v1c1c2v3c3c4 . . . cn

where for each i, ci ∈ C∗ and vi ∈ V.

ρ(CVCVCVCVCVC) = CVCCVCCVC
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Outline

▶ Show that ρ is not strictly local.

▶ Define a class of functions that includes ρ.
▶ Discuss the theoretical consequences.
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Strictly Local Functions



Subregular Phonology

What constitutes a possible phonological dependency?

▶ Tier-based strictly local dependencies (Heinz et al., 2011).
▶ *NC:̥ *np, *nt, *nk, *mp, *mt, *mk…
▶ *CC: *pp, *pt, *pk, *bp, *bt, *bk…
▶ NoCoda: *p#, *t#, *k#, *b#, *d#, *g#…
▶ Vowel Harmony: *ea, *eı, *eu, *ae, *ai, *aü…
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Tier-Based Strictly Local Languages

A language L is k-strictly local on tier T (TSL) if

▶ there exists S ⊆ Σ∗ such that
▶ every string in S has length at most k and
▶ x ∈ L if and only if no element of S is a substring of x, ignoring

symbols not in T.
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Tier-Based Strictly Local Functions

▶ TSL languages describe phonotactic dependencies.

▶ Phonological processes are described by TSL functions.

▶ Example: ∅ → u / C _
{
C
#

}
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Japanese /aiskriim/ → [aisukuriimu]
Output: a
Input: # a i s k r i i m #

↑
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Tier-Based Strictly Local Functions

Wemake the following assumptions about phonological processes.

▶ Streaming: The process scans the input string from left to right
and produces part of the output at each time step.

▶ Determinism: If the process f outputs y after reading x, then y is
a common prefix of {f(xz)|z ∈ Σ∗}.

Definition
A common prefix of a set A is a string p such that every string in A
begins with p.

▶ Parsimony: This common prefix is the longest one possible.
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Tier-Based Strictly Local Functions

Definition
For a function f : Σ∗ → Σ∗,

f←(x) = lcp({f(xz)|z ∈ Σ∗})

and f→(z, xz) is the string such that

f(xz) = f←(x)f→(z, xz).

Definition
For a string x ∈ Σ∗, tier T ⊆ Σ, and number k, suffkT(x) is the last k
symbols of x on tier T.
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Tier-Based Strictly Local Functions

Definition (Chandlee et al., In prep)
A function f : Σ∗ → Σ∗ is k-strictly local on tier T if for every u, v ∈ Σ∗,
if

suffk−1T (u) = suffk−1T (v)

and
suffk−1T (f←(u)) = suffk−1T (f←(v)),

then for allw ∈ Σ∗ we have

f→(w,uw) = f→(w, vw).

12 of 23



ρ is not TSL

To show that ρ is not k-SL on tier T, we must find u, v,w such that

suffk−1T (u) = suffk−1T (v)

suffk−1T (ρ←(u)) = suffk−1T (ρ←(v)),

but ρ→(w,uw) ̸= ρ→(w, vw).

▶ Let a be a vowel. u = a4k, v = a4k+1,w = a

▶ ρ←(u) = a2k, ρ←(v) = a2k+1

▶ ρ(uw) = a2k+1, ρ(vw) = a2k+1

▶ ρ→(w,uw) = a, ρ→(w, vw) = ∅
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Time Alignment



Why is ρ not TSL?

Parsimonious deterministic streaming algorithm for ρ:

▶ Do not delete the first vowel.
▶ If the most recent vowel was deleted, do not delete this vowel.
▶ If the most recent vowel was not deleted, delete this vowel.
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Parsimonious deterministic streaming algorithm for ρ:
▶ Do not delete the first vowel.
▶ If the most recent vowel was deleted, do not delete this vowel.
▶ If the most recent vowel was not deleted, delete this vowel.

Deletion destroys evidence.

15 of 23



Rhythmic Syncope in OT

Existing OT analyses address this problem.

▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23



Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅

▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23



Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints

▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23



Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23



Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV

▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23



Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)

▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23



Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)

▶ (CV́.C)(CV́.C)

16 of 23



Rhythmic Syncope in OT

Existing OT analyses address this problem.
▶ Kager (1997): V → • instead of V → ∅
▶ Blumenfeld (2006): IO-markedness constraints
▶ McCarthy (2008): Harmonic Serialism

▶ CVCVCVCV
▶ (CV.CV)(CV.CV)
▶ (CV́.CV)(CV́.CV)
▶ (CV́.C)(CV́.C)

16 of 23



Time-Aligned TSL Functions

Definition
Let f : Σ∗ → Σ∗ and x = x1x2 . . . xn ∈ Σ∗. The ith most recent action of
f on x is the pair

⟨
xn−i+1, f←i (x)

⟩
, where f←i (x) is the string such that

f←(x1x2 . . . xn−i+1) = f←(x1x2 . . . xn−i)f
←
i (x).

For T ⊆ Σ∗, the ith most recent action of f on x on tier T is the action
denoted ⟨

xi,T, f
←
i,T(x)

⟩
:=

⟨
xn−j+1, f

←
n−j+1(x)

⟩
,

where j is the ith largest index such that xn−j+1 ∈ T and
f←n−j+1(x) ∈ T∗.
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Time-Aligned TSL Functions

Definition
Let f : Σ∗ → Σ∗ and T ⊆ Σ. For k ∈ N, f is time-aligned k-strictly local
on tier T if for all u, v ∈ Σ, if⟨

ui,T, f
←
i,T(u)

⟩
=

⟨
vi,T, f

←
i,T(V)

⟩
for 1 ≤ i ≤ k, then for allw ∈ Σ∗,

f→(w,uw) = f→(w, vw).
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ρ is TATSL

ρ is 1-TATSL on tier V.

▶ ρ←1,V(c0v1c1v2c2 . . . v2mc2m) = ∅
▶ ρ←1,V(c0v1c1v2c2 . . . v2m+1c2m+1) = v2m+1
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Conclusion



Theoretical Consequences

▶ Chandlee’s (2014) goal is to describe all phonological processes.

▶ This talk suggests that TSL is not the right answer.
▶ However, Bowers (To appear) suggests that rhythmic syncope

may not be diachronically robust.

▶ 1930s: /ɡʊtɪɡʊmɪnʌgɪbɪnɑː-d/→ [ɡtɪɡmɪngɪbnɑː-d]
▶ Today: /ɡtɪɡmɪŋɪbnɑː-d/→ [ɡtɪɡmɪŋɪbnɑː-d]

▶ Modern speakers understand the 1930s forms but do not use
them.

▶ Similar phenomena have been observed in Old Russian
(Isacenko, 1970) and Old Irish (McManus, 1983).
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Conclusion

▶ Rhythmic syncope is not TSL.

▶ The time-aligned TSL functions incorporate rhythmic syncope.
▶ Rejection of rhythmic syncope by child learners would constitute

evidence for the TSL hypothesis.
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